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Abstract: The position vector field is the most elementary and natural geometric object on a Euclidean
submanifold. The position vector field plays important roles in physics, in particular in mechanics.
For instance, in any equation of motion, the position vector x(t) is usually the most sought-after
quantity because the position vector field defines the motion of a particle (i.e., a point mass):
its location relative to a given coordinate system at some time variable t. This article is a survey
article. The purpose of this article is to survey recent results of Euclidean submanifolds associated
with the tangential components of their position vector fields. In the last section, we present some
interactions between torqued vector fields and Ricci solitons.
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1. Introduction

For an n-dimensional submanifold M in the Euclidean m-space Em, the most elementary and
natural geometric object is the position vector field x of M. The position vector is a Euclidean vector
x =

−→
OP that represents the position of a point P ∈ M in relation to an arbitrary reference origin

O ∈ Em.
The position vector field plays important roles in physics, in particular in mechanics. For instance,

in any equation of motion, the position vector x(t) is usually the most sought-after quantity because
the position vector field defines the motion of a particle (i.e., a point mass): its location relative to a
given coordinate system at some time variable t. The first and the second derivatives of the position
vector field with respect to time t give the velocity and acceleration of the particle.

For a Euclidean submanifold M of a Euclidean m-space, there is a natural decomposition of the
position vector field x given by:

x = xT + xN , (1)

where xT and xN are the tangential and the normal components of x, respectively. We denote by |xT |
and |xN | the lengths of xT and of xN , respectively. Clearly, we have |xN | =

√
|x|2 − |xT |2. In [1], the

author provided a survey on several topics in differential geometry associated with position vector
fields on Euclidean submanifolds.

In this paper, we discuss Euclidean submanifolds M whose tangential components xT admit some
special properties such as concurrent, concircular, torse-forming, etc. Moreover, we will also discuss
constant-ratio submanifolds, as well as Ricci solitons on Euclidean submanifolds with the potential
fields of the Ricci solitons coming from the tangential components of the position vector fields. In the
last section, we present some interactions between torqued vector fields and Ricci solitons.
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2. Preliminaries

Let x : M→ Em be an isometric immersion of a Riemannian manifold M into a Euclidean m-space
Em. For each point p ∈ M, we denote by Tp M and T⊥p M the tangent space and the normal space of M
at p, respectively.

Let ∇ and ∇̃ denote the Levi–Civita connections of M and Em, respectively. Then, the formulas
of Gauss and Weingarten are given respectively by (cf. [2–6]):

∇̃XY = ∇XY + h(X, Y), (2)

∇̃Xξ = −Aξ X + DXξ, (3)

for vector fields X, Y tangent to M and ξ normal to M, where h is the second fundamental form, D the
normal connection and A the shape operator of M.

At a given point p ∈ M, the first normal space of M in Em, denoted by Im hp, is the subspace
given by:

Im hp = Span{h(X, Y) : X, Y ∈ Tp M}. (4)

For each normal vector ξ at p, the shape operator Aξ is a self-adjoint endomorphism of Tp M.
The second fundamental form h and the shape operator A are related by:〈

Aξ X, Y
〉
= 〈h(X, Y), ξ〉 , (5)

where 〈 , 〉 is the inner product on M, as well as on the ambient Euclidean space. The covariant
derivative ∇̄h of h with respect to the connection on TM⊕ T⊥M is defined by:

(∇̄Xh)(Y, Z) = DX(h(Y, Z))− h(∇XY, Z)− h(Y,∇XZ). (6)

For a given point p ∈ M, we put:

Im (∇̄hp) = {∇̄Xh)(Y, Z) : X, Y, Z ∈ Tp M}. (7)

The subspace Im ∇̄hp is called the second normal space at p.
The equation of Gauss of M in Em is given by:

R(X, Y; Z, W) = 〈h(X, W), h(Y, Z)〉 − 〈h(X, Z), h(Y, W)〉 (8)

for X, Y, Z, W tangent to M, where R is the Riemann curvature tensors of M defined by:

R(X, Y; Z, W) = 〈∇X∇YZ, W〉 − 〈∇Y∇XZ, W〉 −
〈
∇[X,Y]Z, W

〉
.

The equation of Codazzi is:

(∇̄Xh)(Y, Z) = (∇̄Yh)(X, Z). (9)

The mean curvature vector H of a submanifold M is defined by:

H =
1
n

trace h, n = dim M. (10)

A Riemannian manifold is called a flat space if its curvature tensor R vanishes identically. Further,
a submanifold M is called totally umbilical (respectively, totally geodesic) if its second fundamental
form h satisfies h(X, Y) = 〈X, Y〉H identically (respectively, h = 0 identically).
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A hypersurface of a Euclidean (n + 1)-space En+1 is called a quasi-umbilical hypersurface if its
shape operator has an eigenvalue κ of multiplicity mult(κ) ≥ n− 1 (cf. ([2], p. 147)). On the subset
U of M on which mult(κ) = n − 1, an eigenvector with eigenvalue of multiplicity one is called a
distinguished direction of the quasi-umbilical hypersurface.

The following lemmas can be found in [7].

Lemma 1. Let x : M→ Em be an isometric immersion of a Riemannian n-manifold into a Euclidean m-space
Em. Then, x = xT holds identically if and only if M is a conic submanifold with the vertex at the origin.

Lemma 2. Let x : M→ Em be an isometric immersion of a Riemannian n-manifold into Em. Then, x = xN

holds identically if and only if M lies in a hypersphere centered at the origin.

In view of Lemmas 1 and 2, we make the following.

Definition 1. A submanifold M of Em is called proper if it satisfies x 6= xT and x 6= xN almost everywhere.

3. Euclidean Submanifolds with Constant |xT| or Constant |xN|

Euclidean submanifolds with constant |xT | are called T-constant submanifolds in [8]. These
submanifolds were first introduced and studied by the author in [8].

One important property of a T-constant proper hypersurface M is that the tangential component
xT of the position vector field x of M defines a principal direction for the hypersurface. Moreover,
the normal component xN of M is nowhere zero (see, ([8], p. 66)).

T-constant Euclidean proper submanifolds were classified in [8] as follows.

Theorem 1. Let x : M → Em be an isometric immersion of a Riemannian n-manifold into the Euclidean
m-space. Then, M is a T-constant proper submanifold if and only if there exist real numbers a, b and local
coordinate systems {s, u2, . . . , un} on M such that the immersion x is given by:

x(s, u2, . . . , un) =
√

a2 + b + 2as Y(s, u2, . . . , un), (11)

where Y = Y(s, u2, . . . , un) satisfies the following conditions:

(a) Y = Y(s, u2, . . . , un) lies in the unit hypersphere Sm−1(1),
(b) the coordinate vector field Ys is perpendicular to coordinate vector fields Yu2 , . . . , Yun and
(c) Ys satisfies |Ys| =

√
b + 2as/(a2 + b + 2as).

Now, we provide some examples of T-constant proper hypersurfaces in Rn+1.

Example 1. For a given real number a > 0 and for s > 0, we define Y = Y(s, u2, . . . , un) by:

Y =
1√

a2 + 2as

(
a sin

(√2as
a

)
−
√

2as cos
(√2as

a

)
,{

a cos
(√2as

a

)
+
√

2as sin
(√2as

a

)} n

∏
j=2

cos uj, (12)

{
a cos

(√2as
a

)
+
√

2as sin
(√2as

a

)}
sin u2, . . . ,{

a cos
(√2as

a

)
+
√

2as sin
(√2as

a

)}
sin un

n−1

∏
j=2

cos uj

)



Mathematics 2017, 5, 51 4 of 16

in En+1. Then, |Y| = 1, and Y = Y(s, u2, . . . , un) satisfies the conditions (a), (b) and (c) of Theorem 1. An easy
computation shows that:

x =
√

a2 + 2as Y(s, u2, . . . , un) (13)

satisfies |xT | = a. Thus, (13) defines a proper T-constant submanifold in En+1.

Similarly, one may also consider Euclidean submanifolds with constant |xN |. Such submanifolds
are called N-constant submanifolds in [8].

Proper N-constant Euclidean submanifolds were classified in [8] as follows.

Theorem 2. Let x : M → Em be an isometric immersion of a Riemannian n-manifold into the Euclidean
m-space. Then, M is an N-constant proper submanifold if and only if there exist a positive number c and local
coordinate systems {s, u2, . . . , un} on M such that the immersion x is given by:

x(s, u2, . . . , un) =
√

s2 + c2 Y(s, u2, . . . , un), (14)

where Y = Y(s, u2, . . . , un) satisfies the conditions:

(1) Y = Y(s, u2, . . . , un) lies in the unit hypersphere Sm−1(1),
(2) Ys is perpendicular to coordinate vector fields Yu2 , . . . , Yun and
(3) Ys satisfies |Ys| = c/(s2 + c2).

Here are some examples of N-constant proper hypersurfaces of En+1.

Example 2. For a given positive numbers c, we define:

Y =
1√

s2 + c2

(
c, s

n

∏
j=2

cos uj, s sin u2, . . . , s sin un

n−1

∏
j=2

cos uj

)
(15)

in En+1. Then, 〈Y, Y〉 = 1, and Y = Y(s, u2, . . . , un) satisfies the conditions (1), (2) and (3) of Theorem 2.
An easy computation shows that:

x =
√

s2 + c2 Y(s, u2, . . . , un) (16)

satisfies
〈

xN , xN〉 = c2, which provides an example of a proper N-constant submanifold.

4. Euclidean Submanifolds with Constant Ratio |xT| : |xN|

Euclidean submanifolds with the ratio |xT | : |xN | being constant are called constant ratio
submanifolds. The study of such submanifolds was initiated by the author in [9,10].

As we mentioned in [1], constant-ratio curves in a plane are exactly the equiangular curves
in the sense of D’Arcy Thompson’s biology theory on growth and form [11]. Thus, constant-ratio
submanifolds can be regarded as a higher dimensional version of Thompson’s equiangular curves.
For this reason, constant-ratio submanifolds are also known in some literature as equiangular
submanifolds (see, e.g., [12,13]).

Constant-ratio submanifolds were completely classified by the author in [9,10] as follows.

Theorem 3. Let x : M → Em be an isometric immersion of a Riemannian n-manifold into the Euclidean
m-space. Then, M is a constant-ratio proper submanifold if and only if there exists a number b ∈ (0, 1) and
local coordinate systems {s, u2, . . . , un} on M such that the immersion x is given by:

x(s, u2, . . . , un) = bs Y(s, u2, . . . , un), (17)

where Y = Y(s, u2, . . . , un) satisfies the conditions:
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(a) Y = Y(s, u2, . . . , un) lies in the unit hypersphere Sm−1(1),
(b) Ys is perpendicular to Yu2 , . . . , Yun and
(c) |Ys| =

√
1− b2/(bs).

We give the following examples of constant-ration hypersurfaces.

Example 3. Let b be a real number in (0, 1) and s > 0. We define:

Y(s, u2, . . . , un) =

(
sin

(√
1− b2

b
ln s

)
, cos

(√
1− b2

b
ln s

)
n

∏
j=2

cos uj,

cos

(√
1− b2

b
ln s

)
sin u2, . . . , cos

(√
1− b2

b
ln s

)
sin un

n−1

∏
j=2

cos uj

)

in En+1. Then, |Y| = 1, and Y = Y(s, u2, . . . , un) is a local parametrization of the unit sphere Sn. Moreover,
Y(s, u2, . . . , un) satisfies Conditions (b) and (c) of Theorem 3.

An easy computation shows that x(s, u2, . . . , un) = bsY(s, u2, . . . , un) satisfies |x| = bs and |xT | = b2s.
Hence, |xT | = b|x|. Consequently, x defines a constant-ratio hypersurface in En+1.

Remark 1. Constant-ratio curves also relate to the motion in a central force field that obeys the inverse-cube
law. In fact, the trajectory of a mass particle subject to a central force of attraction located at the origin that obeys
the inverse-cube law is a curve of constant-ratio. The inverse-cube law was originated from Sir Isaac Newton
(1642–1727) in his letter sent on 13 December 1679 to Robert Hooke (1635–1703). This letter is of great historical
importance since it reveals the state of Newton’s development of dynamics at that time (see, for instance, [14,15],
pp. 266–271, [16,17], Book I, Section II, Proposition IX).

Let ρ denote the distance function of a submanifold M in Em, i.e., ρ = |x|. It was proven in [18]
that the Euclidean submanifold M is of constant-ratio if and only if the gradient of the distance function
ρ has constant length.

Remark 2. Constant ratio submanifolds are related to the notion of convolution manifolds introduced by the
author in [18,19], as well.

5. Rectifying Euclidean Submanifolds with Concurrent xT

Let α : I → E3 be a unit speed curve in the Euclidean three-space E3 with Frenet–Serret apparatus
{κ, τ, T, N, B}, where κ, τ, T, N and B denote the curvature, the torsion, the unit tangent T, the unit
principal normal N and the unit binormal of α, respectively. Then, α is called a Frenet curve if the
curvature and torsion of α satisfy κ > 0 and τ 6= 0.

The famous Frenet formulas of α are given by:
t′ = κn,

n′ = −κt + τb,

b′ = −τn.

(18)

At each point of the curve, the planes spanned by {t, n}, {t, b} and {n, b} are known as the
osculating plane, the rectifying plane and the normal plane, respectively.

It is well known in elementary differential geometry that a curve in E3 lies in a plane if its position
vector x lies in its osculating plane at each point; and it lies on a sphere if its position vector lies in its
normal plane at each point. In view of these basic facts, the author defined a rectifying curve in E3 as a
Frenet curve whose position vector field always lie in its rectifying plane [20]. Moreover, he completely
classified in [20] rectifying curves in E3. Furthermore, he proved in [21] that a curve on a general
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cone (not necessarily a circular one) in E3 is a geodesic if and only if it is a rectifying curve or an open
portion of a ruling of the cone. In [22], several interesting links between rectifying curves, centrodes
and extremal curves were established by B.-Y. Chen and F. Dillen. Some further results in this respect
were also obtained recently in [23,24].

Clearly, it follows from the definition of a rectifying curve α : I → E3 that the position vector field
x of α satisfies:

x(s) = λ(s)t(s) + µ(s)b(s) (19)

for some functions λ and µ.
For a Frenet curve γ : I → E3, the first normal space of γ at s0 is the line spanned by the principal

normal vector n(s0). Hence, the rectifying plane of γ at s0 is nothing but the plane orthogonal to the
first normal space at s0. For this reason, for a submanifold M of Em and a point p ∈ M, we call the
subspace of TpEm the rectifying space of M at p if it is the orthogonal complement to the first normal
space Im σp.

According to [7], a submanifold M of a Euclidean m-space Em is called a rectifying submanifold
if the position vector field x of M always lies in its rectifying space. In other words, M is called a
rectifying submanifold if and only if: 〈

x(p), Im hp
〉
= 0 (20)

holds for each point p ∈ M. A non-trivial vector field Z on a Riemannian manifold M is called
concurrent if it satisfies∇XZ = X for any vector X tangent to M, where∇ is the Levi–Civita connection
of M (cf. [25–28]).

The following results on rectifying submanifolds were proven in [7,29].

Theorem 4. If M is a proper submanifold of Em, then M is a rectifying submanifold if and only if xT is a
concurrent vector field on M.

Theorem 5. A proper hypersurface M of En+1 is rectifying if and only if M is an open portion of a hyperplane
L of En+1 with o /∈ L, where zero denotes the origin of En+1.

Theorem 6. Let M be a rectifying proper submanifold of Em. If m ≥ 2 + dim M, then with respect to some
suitable local coordinate systems {s, u2, . . . , un} on M, the immersion x of M in Em takes the form:

x(s, u2, . . . , un) =
√

s2 + c2 Y(s, u2, . . . , un), 〈Y, Y〉 = 1, c > 0, (21)

such that the metric tensor gY of the spherical submanifold defined by Y satisfies:

gY =
c2

(s2 + c2)2 ds2 +
s2

s2 + c2

n

∑
i,j=2

gij(u2, . . . , un)duiduj. (22)

Conversely, the immersion defined by (21) and (22) is a rectifying proper submanifold.

Remark 3. For the pseudo-Euclidean version of Theorem 5, see [30].

6. Euclidean Submanifolds with Concircular xT

A non-trivial vector field Z on a Riemannian manifold M is called a concircular vector field if it
satisfies (cf., e.g., [5,31,32]):

∇XZ = ϕX, X ∈ TM, (23)
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where ϕ is a smooth function on M, called the concircular function. Obviously, a concircular vector
field with ϕ = 1 is a concurrent vector field. For simplicity, we call a Euclidean submanifold with
concircular xT a circular submanifold.

The following result from [33] classifies concircular submanifolds completely.

Theorem 7. Let M be a proper submanifold of a Euclidean m-space Em with origin zero. If n = dim M ≥ 2,
then M is a concircular submanifold if and only if one of the following three cases occurs:

(a) M is an open portion of a linear n-subspace Ln of Em such that o /∈ L.
(b) M is an open portion of a hypersphere Sn of a linear (n + 1)-subspace Ln+1 of Em such that the origin of

Em is not the center of Sn.
(c) m ≥ n + 2. Moreover, with respect to some suitable local coordinate systems {s, u2, . . . , un} on M,

the immersion x of M in Em takes the following form:

x(s, u2, . . . , un) =
√

2ρ Y(s, u2, . . . , un), 〈Y, Y〉 = 1, (24)

where Y : M→ Sm−1
o (1) ⊂ Em is an immersion of M into the unit hypersphere Sm−1

o (1) such that the
induced metric gY via Y is given by:

gY =
2ρ− ρ′2

4ρ2 ds2 +
ρ′2

2ρ

n

∑
i,j=2

gij(u2, . . . , un)duiduj. (25)

where ρ = ρ(s) satisfies 2ρ > ρ′2 > 0 on an open interval I.

Next, we provide one explicit example of a concircular surface in E4.

Example 4. If we choose n = 2 and ρ(s) = 3
8 s2, then (33) reduces to:

gY =
1

3s2 ds2 +
3
4

du2. (26)

Let us define Y : I1 × I2 → S3
o(1) ⊂ E4 to be the map of I1 × I2 into S3

o(1) given by:

Y(s, u) =
1√
2

(
cos

(√
2√
3

ln s
)

, sin
(√

2√
3

ln s
)

, cos
(√

6
2 u
)

, sin
(√

6
2 u
))

. (27)

Then, the induced metric tensor of I1× I2 via the map Y is given by (34). Therefore, P2 = (I1× I2, gY)

with the induced metric tensor gY being a flat surface.
Now, consider x(s, u) : I1 × I2 → E4 given by x(s, u) = F(s)Y(s, u), i.e.,

x(s, u) =
√

3s
2
√

2

(
cos
(√

2√
3

ln s
)

, sin
(√

2√
3

ln s
)

, cos
(√

6
2 u
)

, sin
(√

6
2 u
))

. (28)

Then, it is easy to verify that the induced metric via x is:

g = ds2 +
9
16

s2du2. (29)

Hence, the Levi–Civita connection of M = (I1 × I2, g) satisfies:

∇ ∂
∂s

∂

∂s
= 0, ∇ ∂

∂u

∂

∂s
=

1
s

∂

∂u
. (30)
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Using (28) and (29), it is easy to verify that the tangential component xT = 3
4 s ∂

∂s of the position
vector field x is a concircular vector field satisfying ∇ZxT = 3

4 Z for Z ∈ TM. Consequently, M is a
concircular surface in E4.

Remark 4. Concircular vector fields play some important roles in general relativity. For instance, it was proven
in [34] that a Lorentzian manifold is a generalized Robertson–Walker spacetime if and only if it admits a timelike
concircular vector field. For the most recent surveys on generalized Robertson–Walker spacetimes, see [5,35].

Remark 5. It was proven in [36] that every Kaehler manifold M (or more generally, pseudo-Kaehler manifold)
with dimC M > 1 does not admit a non-trivial concircular vector field.

7. Euclidean Submanifolds with Torse-Forming xT

In [37], K. Yano extended concurrent and concircular vector fields to torse-forming vector fields.
According to K. Yano, a vector field v on a Riemannian (or pseudo-Riemannian) manifold M is called a
torse-forming vector field if it satisfies:

∇Xv = ϕX + α(X)v, ∀X ∈ TM, (31)

for a function ϕ and a one-form α on M. The one-form α is called the generating form, and the function
ϕ is called the conformal scalar (see [38]). A torqued vector field is a torse-forming vector field v
satisfying (31) with α(v) = 0 (see [39,40]).

Generalized Robertson–Walker (GRW) spacetimes were introduced by L. J. Alías, A. Romero and
M. Sánchez in [41]. The first author proved in [34] that a Lorentzian manifold is a GRW spacetime
if and only if it admits a time-like concircular vector field. For further results in this respect, see an
excellent survey on GRW spacetimes by C. A. Mantica and L. G. Molinari [35] (see also [5]).

Twisted products are natural extensions of warped products in which the warping functions were
replaced by twisting functions (cf. [5,42]). It was proven in [39] that a Lorentzian manifold is a twisted
space of the form I ×λ F with time-like base I if and only if it admits a time-like torqued vector field.
Recently, C. A. Mantica and L. G. Molinari proved in [43] that such a Lorentzian twisted space can also
be characterized as a Lorentzian manifold admitting a torse-forming time-like unit vector field.

Before we state the results for Euclidean hypersurfaces with torse-forming xT, we give the
following simple link between Hessian of functions and torse-forming vector fields.

Theorem 8. Let f be a non-constant function on a Riemannian manifold M. Then, the gradient∇ f of f is a
torse-forming vector field if and only if the Hessian H f satisfies:

H f = ϕg + γd f ⊗ d f (32)

where ϕ and γ are functions on M.

Proof. Let f be a non-constant function on a Riemannian manifold M. Assume that the gradient∇ f
of f is a torse-forming vector field so that:

∇X(∇ f ) = ϕX + α(X)∇ f (33)

for some function ϕ and one-form α on M. Then, for any vector fields X, Y on M, the Hessian H f of
f satisfies:

H f (X, Y) = XY f − (∇XY) f = X 〈Y,∇ f 〉 − 〈∇XY,∇ f 〉
= 〈Y,∇X(∇ f )〉 = ϕ 〈Y, X〉+ α(X) 〈Y,∇ f 〉
= ϕ 〈Y, X〉+ α(X)d f (Y).

(34)
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Since the Hessian H f (X, Y) is symmetric in X and Y, we derive from (34) that:

〈Y,∇X(∇ f )〉 = X 〈Y,∇ f 〉 − 〈∇XY,∇ f 〉 = H f (X, Y)

= 〈Y, ϕ, X + γd f (X)∇ f 〉

for vector field X, Y. Therefore, we obtain (32) with α = γd f . Consequently, the gradient∇ f of f is a
torse-forming vector field.

The following corollary is an easy consequence of Theorem 8.

Corollary 1. Let f be a non-constant function on a Riemannian manifold M. If the gradient ∇ f of f is a
torqued vector field, then it is a concircular vector field on M.

Remark 6. Theorem 8 extends Lemma 4.1 of [31].

Next, we present the following results from [44] for Euclidean hypersurfaces with torse-forming xT.

Proposition 1. Let M be a proper hypersurface of Em. If the tangential component xT of the position
vector field x of M is a torse-forming vector field, then M is a quasi-umbilical hypersurface with xT as its
distinguished direction.

For quasi-umbilical hypersurfaces in Em we refer to [2,45].
A rotational hypersurface M = γ× Sn−1 in En+1 is an O(n− 1)-invariant hyper-surface, where

Sn−1 is a Euclidean sphere and:

γ(x) = (x, g(x)), g(x) > 0, x ∈ I, (35)

is a plane curve (the profile curve) defined on an open interval I and the x-axis is called the axis of
rotation. The rotational hypersurface M can expressed as:

x = (u, g(u)y1, · · · , g(u)yn) with y2
1 + · · ·+ y2

n = 1. (36)

The hypersurfaces is called a spherical cylinder if its profile curve γ is a horizontal line segment
(i.e., g = constant 6= 0). Additionally, it is called a spherical cone if γ is a non-horizontal line segment
(i.e., g = cu, 0 6= c ∈ R). For simplicity, we only consider rotational hypersurfaces M, which contain no
open parts of hyperspheres, spherical cylinders or spherical cones.

A torse-forming vector field v is called proper torse-forming if the one-form α in (31) is nowhere
zero on a dense open subset of M.

The simple link between rotational hypersurfaces and torse-forming xT is the following.

Theorem 9. Let M be a proper hypersurface of En+1 with n ≥ 3. Then, the tangential component xT of the
position vector field x of M is a proper torse-forming vector field if and only if M is an open part of a rotational
hypersurface whose axis of rotation contains the origin [44].

8. Rectifying Submanifolds of Riemannian Manifolds

In [39], the notion of rectifying submanifolds of Euclidean spaces was extended to rectifying
submanifolds of Riemannian manifolds.

Definition 2. Let V be a non-vanishing vector field on a Riemannian manifold M̃, and let M be a submanifold
of M̃ such that the normal component VN of V is nowhere zero on M. Then, M is called a rectifying submanifold
(with respect to V) if and only if: 〈

V(p), Im hp
〉
= 0 (37)
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holds at each p ∈ M.

Definition 3. A submanifold M of a Riemannian manifold M̃ is said to be twisted if:

Im ∇̄hp * Im hp (38)

holds at each point p ∈ M.

A vector field on a Riemannian manifold M is called a gradient vector field if it is the gradient∇ f
of some function f on M.

In terms of gradient vector fields, Corollary 1 can be restated as the follows.

Proposition 2. If a torqued vector field on a Riemannian manifold M is a gradient vector field, then it is a
concircular vector field.

The following result from [39] is an extension of Theorem 4.

Theorem 10. Let M be a submanifold of a Riemannian manifold M̃, which admits a torqued vector field T.
If the tangential component TT of T is nonzero on M, then M is a rectifying submanifold (with respect to T ) if
and only if TT is torse-forming vector field on M whose conformal scalar is the restriction of the torqued function
and whose generating form is the restriction of the torqued form of T on M.

In [39], we also have the following results.

Theorem 11. Let M be a submanifold of a Riemannian manifold M̃ endowed with a concircular vector field
Z 6= 0 with ZT 6= 0 on M. Then, M is a rectifying submanifold with respect to Z if and only if the tangential
component ZT of Z is a concircular vector field with the concircular function given by the restriction of the
concircular function of Z on M.

The following result is an immediate consequence of Theorem 11.

Corollary 2. Let M be a submanifold of a Riemannian manifold M̃ endowed with a concurrent vector field
Z 6= 0 such that ZT 6= 0 on M. Then, M is a rectifying submanifold with respect to Z if and only if the
tangential component ZT of Z is a concurrent vector field on M.

Moreover, from Theorem 11, we also have the following.

Proposition 3. Let M̃ be a Riemannian m-manifold endowed with a concircular vector field Z. If M is a
rectifying submanifold of M̃ with respect to Z, then we have:

(1) ZN is of constant length 6= 0.
(2) The concircular function ϕ of ZT is given by ϕ = ZT(ln ρ), where ρ = |ZT|.

9. Euclidean Submanifolds with xT as Potential Fields

A smooth vector field ξ on a Riemannian manifold (M, g) is said to define a Ricci soliton if
it satisfies:

1
2
Lξ g + Ric = λg, (39)

where Lξ g is the Lie-derivative of the metric tensor g with respect to ξ, Ric is the Ricci tensor of (M, g)
and λ is a constant (cf. for instance [46–48]). We shall denote a Ricci soliton by (M, g, ξ, λ).

A Ricci soliton (M, g, ξ, λ) is called shrinking, steady or expanding according to λ > 0, λ = 0,
or λ < 0, respectively. A trivial Ricci soliton is one for which ξ is zero or Killing, in which case the
metric is Einstein.
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A Ricci soliton (M, g, ξ, λ) is called a gradient Ricci soliton if its potential field ξ is the gradient of
some smooth function f on M.

For a gradient Ricci soliton, the soliton equation can be expressed as:

Ric f = λg, (40)

where
Ric f := Ric + Hess( f ) (41)

is known as the Bakry–Émery curvature, where Hess( f ) denotes the Hessian of f . Hence, a gradient
Ricci soliton has constant Bakry–Émery curvature; a similar role as an Einstein manifold.

Compact Ricci solitons are the fixed points of the Ricci flow:

∂g(t)
∂t

= −2Ric(g(t)) (42)

projected from the space of metrics onto its quotient modulo diffeomorphisms and scalings and often
arise as blow-up limits for the Ricci flow on compact manifolds. Further, Ricci solitons model the
formation of singularities in the Ricci flow, and they correspond to self-similar solutions (cf. [47]).

During the last two decades, the geometry of Ricci solitons has been the focus of attention of many
mathematicians. In particular, it has become more important after Grigory Perelman [48] applied Ricci
solitons to solve the long-standing Poincaré conjecture posed in 1904. G. Perelman observed in [48]
that the Ricci solitons on compact simply connected Riemannian manifolds are gradient Ricci solitons
as solutions of Ricci flow.

The next result from ([31], Theorem 5.1) classifies Ricci solitons with concircular potential field.

Theorem 12. A Ricci soliton (M, g, v, λ) on a Riemannian n-manifold (M, g) with n ≥ 3 has concircular
potential field v if and only if the following three conditions hold:

(a) The function ϕ in (31) is a nonzero constant, say b;
(b) λ = b;
(c) M is an open portion of a warped product manifold I ×bs+c F, where I is an open interval with arc-length

s, c is a constant and F is an Einstein (n− 1)-manifold whose Ricci tensor satisfies

RicF = (n− 2)b2gF,

where gF is the metric tensor of F.

By combining Theorem 12 with some results from [31], we have the following .

Corollary 3. The only Riemannian manifold of constant sectional curvature admitting a Ricci soliton with
concircular potential field is a Euclidean space [31].

Now, we present results on Ricci solitons of Euclidean hypersurfaces such that the potential field
ξ is the tangential components xT of the position vector field of the hypersurfaces.

For Ricci solitons on a Euclidean submanifold with the potential field given by xT, we have the
following result from ([49], Theorem 4.1, p. 6).

Theorem 13. Let (M, g, ξ, λ) be a Ricci soliton on a Euclidean submanifold M of Em. If the potential field ξ is
the tangential component xT of the position vector field of M, then the Ricci tensor of (M, g) satisfies:

Ric(X, Y) = (λ− 1) 〈X, Y〉 − 〈h(X, Y), xN 〉 (43)

for any X, Y tangent to M.
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Let ξ be a normal vector field of a Riemannian submanifold M. Then, M is called ζ-umbilical if its
shape operator satisfies Aζ = ϕI, where ϕ is a function on M and I is the identity map.

The following are some simple applications of Theorem 13.

Corollary 4. A Ricci soliton (M, g, xT, λ) on a Euclidean submanifold M is trivial if and only if M
is x⊥-umbilical.

Corollary 5. Every Ricci soliton (M, g, xT, λ) on a totally umbilical submanifold M of Em is a trivial
Ricci soliton.

Corollary 6. If (M, g, xT, λ) is a Ricci soliton on a minimal submanifold M in Em, then M has constant scalar
curvature given by 1

2 n(λ− 1) with n = dim M.

Corollary 7. Every Ricci soliton (M, g, xT, λ) on a Euclidean submanifold M is a gradient Ricci soliton with
potential function ϕ = 1

2 g̃(x, x).

The next result was also obtained in ([49], Proposition 4.1, p. 6).

Theorem 14. If (M, g, ξ, λ) is a Ricci soliton on a hypersurface of M of En+1 whose potential field ξ is xT, then
M has at most two distinct principal curvatures given by:

κ1, κ2 =
nα + ρ±

√
(nα + ρ)2 + 4− 4λ

2
, (44)

where α is the mean curvature and ρ is the support function of M, i.e., ρ = 〈x, N〉 and H = αN with N being a
unit normal vector field.

The following result from ([50], Theorem 4.2) classifies the Ricci soliton of Euclidean hypersurfaces
with the potential field given by xT (see also [51,52]).

Theorem 15. Let (M, g, xT, λ) be a Ricci soliton on a hypersurface of M of En+1. Then, M is one of the
following hypersurfaces of En+1 :

(1) A hyperplane through the origin zero.
(2) A hypersphere centered at the origin.
(3) An open part of a flat hypersurface generated by lines through the origin zero;
(4) An open part of a circular hypercylinder S1(r)×En−1, r > 0;
(5) An open part of a spherical hypercylinder Sk(

√
k− 1)×En−k, 2 ≤ k ≤ n− 1,

where n = dim M.

10. Interactions between Torqued Vector Fields and Ricci Solitons

In this section, we present some interactions between torqued vector fields and Ricci solitons on
Riemannian manifolds from [40].

First, we recall the following definition.

Definition 4. The twisted product B× f F of two Riemannian manifolds (B, gB) and (F, gF) is the product
manifold B× F equipped with the metric:

g = gB + f 2gF, (45)

where f is a positive function on B× F, which is called the twisting function. In particular, if the function f
in (45) depends only B, then it is called a warped product, and the function f is called the warping function.
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The following result from ([40], Theorem 2.1, p. 241) completely determined those Riemannian
manifolds admitting torqued vector fields.

Theorem 16. If a Riemannian manifold M admits a torqued vector field T, then M is locally a twisted product
I × f F such that T is always tangent to I, where I is an open interval. Conversely, for each twisted product
I × f F, there exists a torqued vector field T such that T is always tangent to I.

In view of Theorem 16, we made in [40] the following.

Definition 5. A torqued vector field T is said to be associated with a twisted product I × f F if T is always
tangent to I.

We have the following result from [40].

Theorem 17. Every torqued vector field T associated with a twisted product I × f F is of the form:

T = µ f
∂

∂s
, (46)

where s is an arc-length parameter of I, µ is a nonzero function on F and f is the twisting function.

Theorem 18. A torqued vector field T on a Riemannian manifold M is a Killing vector field if and only if T is a
recurrent vector field that satisfies:

∇XT = α(X)T and α(T) = 0, (47)

where α is a one-form.

As an application of Theorem 17, we have the following classification of torqued vector fields on
Einstein manifolds.

Theorem 19. Every torqued vector field T on an Einstein manifold M is of the form:

T = ζZ, (48)

where Z is a concircular vector field on M and ζ is a function satisfying Zζ = 0. Conversely, every vector field
of the form (48) is a torqued vector field on M.

Another application of Theorem 17 is the following.

Corollary 8. Up to constants, there exists at most one concircular vector field associated with a warped product
I ×η F.

A Riemannian manifold (M, g) is called a quasi-Einstein manifold if its Ricci tensor Ric satisfies:

Ric = ag + bα⊗ α (49)

for functions a, b, and one-form α.
A Riemannian manifold (M, g) is called a generalized quasi-Einstein [53] (resp., mixed

quasi-Einstein [54] or nearly quasi-Einstein [55]) manifold if its Ricci tensor satisfies:

Ric = ag + bα⊗ α + cβ⊗ β,

(resp., Ric = ag + bα⊗ β + cβ⊗ α or Ric = ag + bE)
(50)
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where a, b, c are functions, α, β are one-forms and E is a non-vanishing symmetric (0, 2)-tensor on M.
In [40], we made the following definition.

Definition 6. A pseudo-Riemannian manifold is called almost quasi-Einstein if its Ricci tensor satisfies:

Ric = ag + b(β⊗ γ + γ⊗ β) (51)

for some functions a, b and one-forms β and γ.

For Ricci solitons with torqued potential field, we have the following result from [40].

Theorem 20. If the potential field of a Ricci soliton (M, g,T, λ) is a torqued vector field T, then (M, g) is an
almost quasi-Einstein manifold.

The following result from [40] provides a very simple characterization for a Ricci soliton with
torqued potential field to be trivial.

Theorem 21. A Ricci soliton (M, g,T, λ) with torqued potential field T is trivial if and only if T is a concircular
vector field.

In view of Theorem 16, we made the following.

Definition 7. For a twisted product I× f F, the torqued vector field f ∂/∂s is called the canonical torqued vector
field of I × f F, where s is an arc-length parameter on I.

We denote the canonical vector field f ∂/∂s by T
f
ca.

Recall from Theorem 16 that if a Riemannian manifold M admits a torqued vector field, then it
is locally a twisted product I × f F, where F is a Riemannian (n− 1)-manifold and f is the twisting
function. In [40], we proved the following.

Theorem 22. If (I × f F, g,T f
ca, λ) is a Ricci soliton with the canonical torqued vector field T

f
ca as its potential

field, then we have:

(a) T
f
ca is a concircular vector field and

(b) (I × f F, g) is an Einstein manifold.

Remark 7. Ricci solitons (M, g, Z, λ) with concircular potential field Z have been completely determined
in ([31], Theorem 5.1).

Remark 8. If the potential field of the Ricci soliton defined on (I× f F, g) in Theorem 16 is an arbitrary torqued
vector field T associated with I × f F, then it follows from Theorem 17 that T = µ f ∂/∂s for some function µ

defined on F. In this case, we may consider the twisted product I × f̃ F̃ instead, where f̃ = µ f and F̃ is the
manifold F with metric g̃F = µ−2gF. Then, (I × f̃ F̃, g̃,T, λ) with g̃ = ds2 + f̃ 2g̃F is a Ricci soliton whose

potential field T is the canonical torqued vector field T
f̃
ca of I × f̃ F̃.

An important application of Theorem 22 is the following.

Corollary 9. Let (I × f F, g,T f
ca, λ) be steady Ricci solitons with the canonical torqued vector field T

f
ca as its

potential field. If dim F ≥ 2, then we have:

(a) T
f
ca is a parallel vector field,

(b) f is a constant, say c,
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(c) (I ×c F, g) is a Ricci-flat manifold and
(d) F is also Ricci-flat.

11. Conclusions

The position vector field x is the most elemantary and natural object on a Euclidean submanifold.
Similarly, the tangential component xT of the position vector field is the most natural vector field
tangent to the sumanifold. From the results we mentioned above, we conclude that the tangential
component xT of the position vector field of the Euclidean submanifold is the most important vector
field naturally associated with the Euclidean submanifold. The author believes that many further
important properties of xT can be proved.

Conflicts of Interest: The authors declare no conflict of interest.
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